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ABSTRACT ..

The development of bioregenerative systems as part of the Controlled

Ecological Life Support System (CELSS) program depends, in large part, on the

al:_ity to recycle inorganic nutrients contained in waste matedal into plant growth

systems. One significant waste (resource) stream is inedible plant material. This

research compared wheat growth in hydroponic solutions based on inorganic salts

(modified Hoagland's) with solutions based on the soluble fraction of inedible wheat

biomass (leachate). Recycled nutrients in leachate solutions provided the majority of

mineral nutrients for plant growth, although additions of inorganic nutrients to leachate

solutions were neccessary. Results indicate that plant growth and waste recyling

systems can be effectively coupled within CELSS based on 1) equivalent wheat yield

in leachate and Hoagland solutions, and 2) the rapid mineralization of waste organic

matedal in the hydroponic systems. Selective enrichment for microbial communities

able to mineralize organic matedal within the leachate was neccessary to prevent

accumulation of dissolved organic matter in leachate-based solutions. Extensive

analysis of microbial abundance, growth, and activity in the hydroponic systems

indicated that addition of soluble organic material from plants does not cause

excessive microbial growth or "biofouling', and helped define the microbially-mediated

flux of carbon in hydroponic solutions.

INTRODUCTION

The Controlled Ecological Ufe Support System (CELSS) program is a long"

range National Aeronautics and Space Administration (NASA) effort to develop a

bioregenerative life support system which would reduce reliance on extemal material

supplies by utilizing photosynthetic organisms as CO2/O2 converters and sources of

food. Development of a functioning CELSS depends, in large part, on the ability to

recycle inorganic nutrients contained in inedible plant material and human wastes into



plant production systems. Garland and Mackowiak (1990) found that the majority of

most inorganic nutrients contained in inedible wheat biomass was readily soluble (or

leachable) in water. In addition to the inorganic elements, the leachate contained

significant quantities of organic carbon (approximately 15% of the carbon in the

inedible biomass). Garland and Mackowiak (1990) proposed that leachate could be

used as a hydroponic nutrient solution with admendments of certain inorganic

nutrients (particularly nitrate and iron), thereby reducing the reliance on extemal

supplies of inorganic nutrients required in inorganic salt-based media such as

Hoagland's solution (Hoagland and Amon 1938). While preliminary bioassays using

wheat in static hydroponic systems indicated no significant difference in plant growth

between leachate-based (LBS) and Hoagland-based systems (HBS), several

concerns with full-scale use of organic-rich nutdent solutions based on plant leachates

remained: 1) The presence of potentially phytotoxic organic compounds in leachate, 2)

The persistence (accumulation) of organic matedal within plant growth systems, and 3)

The proliferation of deleterious microbial populations (phytopathogenic, biofouling,

etc.) within plant growth systems as a result of organic enrichments.

In order to address these concerns, full growouts of wheat were conducted in

recirculating hydroponic systems containing 1) wheat leachate-based nutdent

solution, and 2) inorganic salt-based Hoagland's solution. The first two concerns

discussed above were addressed by comparing plant biomass and dissolved organic

carbon concentration, respectively, between the two types of systems. The question of

the effects of leachate on microbial populations within hydroponic systems required

the development of a more comprehensive understanding of microbial processing of

carbon in hydroponically-based plant growth systems.

It is important to realize that significant microbial activity is expected in HBS due

to the release of organic matedal from plant roots. The rhizosphere, or area in the

vicinity of plant roots, has long been known to be a region of enhanced microbial
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activity due to the release of root-derived carbon (Hiltner 1904, Lyon and Wilson

1921 ). Low molecular weight compounds (primarily organic acids, amino acids, and

sugars) released into the surrounding environment by healthy, intact roots were

defined as root exudates by Rovira (1969). Martin (1977) proposed the term cell lysate

to describe organics released upon the death of epidermal and cortical root cells, a

common occurrence during the life cycle of plants (Holden 1975, Van Vuurde and

Schippers 1980). The total amount of carbon released from roots represents a

significant fraction of the total carbon fixed by plants, estimated at between 12-24% of

net pdmary productivity for crop plants during early periods in the life cycle (Barber

and Martin 1976, Martin 1977, Merckx et al. 1986, Whipps and Lynch 1983, Martin

1971).

The rate of carbon transfer into the rhizosphere steadily decreases with plant

age (Keith et al. 1986, Martin and Kemp 1986, Merckx et al. 1986). The cause of the

decrease has not been elucidated, but has been proposed to be related to reduced

root growth (Merkcx et al. 1986) and the onset of seed formation (Martin and Kemp

1986, Nooden 1984).

The processing of root-derived carbon in recirculating hydroponic systems has

not been investigated. Existing models of rhizosphere carbon-flow in soil-based

systems view transport of root exudates as a balance between microbial uptake and

molecular diffusion, resulting in a spatially limited rhizosphere (<2 ram) caused by

relatively rapid utilization of exudates near the root surface (Newman and Watson

1977). In recirculating hydroponic systems, advective forces could increase the rate at

which root-derived organics are removed from the root zone, thereby expanding the

zone of microbial stimulation, or rhizosphere, to include the nutrient delivery system.

Barber and Lynch (1977) found that approximately a third of the total bacteria (as

estimated from plate counts) in small, static hydroponic systems were associated with

solution and surfaces. Strayer (1991) reported that over 95% of the microbial load in
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large-scale recirulating hydroponic systems was associated with the plant roots.

However, no studies have comprehensively evaluated the spatial distribution of

microbial abundance, activity, or growth in hydroponic systems.

Additions of soluble organic material (e.g. leachate) to nutrient solutions

represents a potentially very different direction of carbon flow than the release of

organic matedal from roots. First, the spatial extent of microbial communities in LBS

will depend not only on competition for root-derived carbon, but also on competition for

soluble leachate organics directly added to the nutrient delivery system. Secondly,

additions of organic material in leachate will most likely occur in pulses related to

replenishment schedules of inorganic nutrients. Finally, the leachate may be

comprised of different types of organic molecules than root exudates. In particular, the

brownish color of leachate indicates that it may contain a higher percentage of

compounds more recalcitrant to microbial mineralization (e.g. - tannins and other

cyclic hydrocarbons). Supplementing hydroponic systems with leachate organics

represents an effective experimental approach for evaluating carbon-limiting growth

conditions in different microbial habitats within hydroponic systems based solely on

root-derived carbon, thereby helping define the pathway of carbon flux from the root.

The source of the microbial community within hydroponic systems may

significantly affect the degradation of organic material in LBS. Plant leachates appear

to contain a heterogeneous mixture of organic molecules, the mineralization of which

requires some level of adaptation within microbial communities. McArthur et al. (1985)

found that downstream microbial communities could utilize dissolved organic material

from different types of upstream dparian vegetation, but upstream communities could

not utilize dissolved organic carbon from riparian vegetation found only in the

downsream region. These results suggest genotypic or phenotypic adaptation within

the microbial community involving resistance to inhibitory compounds or utilization of

recalcitrant molecules. Murray and Hodson (1986) found that leachate from an aquatic
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macrophyte caused a short term reduction followed by subsequent stimulation in

productivity of bacterioplankton. Bacterial types resistant to inhibitory compounds in

the leachate developed, and displayed luxuriant growth on the labile portion of the

leachate.

It follows, then, that microbial community composition with hydroponic systems,

especially leachate-based ones, can influence the processing of carbon. Hence, it is

important to understand whether functionally similar microbial communities will

develop in CELSS regardless of the inoculum used.

The influence of microbial inoculum is a particularly relevant question in

CELSS. Microbial inoculum in a closed system can be controlled to a much greater

degree than in most biological systems open to the continuous invasion of

microorganisms. However, unlike other levels of biological organization within

CELSS, bacterial inoculum cannot be completely controlled. While a specific number

of plant and animal species will be introduced into CELSS, many different

microorganisms will enter the system unless stringent, probably impractible,

decontamination procedures are employed (e.g. - use of gnotobiotic plants, animals,

humans). If the composition of the microbial inoculum to a CELSS cannot be

completely controlled, than the effects of different inocula on the system must be

understood.

The research described in this document involved the intensive spatial and

temporal analysis of microbial abundance, activity, and growth in recirculating

hydroponic systems using nutrient solution type (HBS vs LBS) and microbial inoculum

as experimental factors. This approach was considered the most effective since it

addressed the potential effects of leachate organics on microbial communities within

hydroponic systems, and helped define how both root-derived and leachate organics

are processed by microbial communities in CELSS. This area of carbon flux was

identified by Garland (1989) as being very poorly understood, yet potentially,
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quantitatively significant in CELSS. Potential use of the plant growth systems as a site

of waste processing increases the importance of understanding the pathway of carbon

flux in hydroponic systems. Finally, this research involved the first evaluation of the

importance of microbial inoculum in CELSS.

METHODS

Plant Growth Systems

Four, replicate nutrient delivery systems were used in the research. Each

system consisted of the following elements: 1) a plant growth tray (29 cm2 ), 2) a

nutrient solution reservoir (29 cm x 8 cm x 9 cm), and 3) a solution collecting tray

constructed out of 1/4" thick polyvinylchlodde (PVC). Plant growth trays contained nine

channels separated by PVC inserts. Solution was gravity fed through sections of

Masterflex neoprene tubing (11.11 mm O.D., 7.94 mm I.D) connected to the nutrient

solution reservoir and attached to separate inlets at the back of each channel. Solution

from the collecting tray was pumped back to the reservoir through similar tubing using

a bellows-type metering pump (Gorrnan-Rupp Industrias, model 14251-007).

Plant growth systems were located on a benchtop within a modified

environment. Two high pressure sodium (HPS) lamps (Lucalox 400 watt bulbs) were

placed 70 cm above the tops of the plant growth trays. A 20 h light:4 h dark diurnal

cycle was maintained during all growouts. While direct measurements of light intensity

were not taken, the instantaneous photosynthetic photon flux was estimated at

between 500-690 mol m-2 d-1 based on values for similarly designed benchtop plant

growth systems at KSC (Ray Wheeler, pars. comm.). Based on a 20 hr light period, this

instantaneous light intensity corresponds to an integrated PPF of 36-50 tool m-2 d-1.

Relative humidity (60-66%), solution pH (5.8 pH units), liquid level (total solution

volume/system of 2 L) were maintained using computer contol. Air temperature in the
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plant growth region ranged from 23-27 ° C during the light period, and decreased to

approximately 20 ° C at night. Estimated average daily temperature was 24.5 ° C.

Based on Bruce Bugbee's wheat maturity formula (pers. comm.), plants were

harvested after 63 days (i.e. - 62 day life cycle for continuous lighting at 23 ° C, add 1

day for each 30 rain reduction of photoperiod, substract 1 day for each 0.2 ° C increase

in temperature).

More complete details of the plant growth systems and all methodologies used

in this research are presented in Garland (1991).

Cultural Techniques

Two types of nutrient solutions were used: 1) inorganic-based modified

Hoagland's solution (Hoagland and Amon 1938, Mackowiak et al. 1989), and 2) a

plant leachate-based solution with inorganic admendments. Hoagland's solution was

prepared from stock solutions of separate inorganic salts as outlined in Table 1. All

stock solutions were prepared using deionized water filtered through a 0.2 micron

pore size Supor-200 membrane filter (Gelman) and autoclaved before use. Plant

leachate was prepared by soaking 50 g of oven-dried (90 ° C) wheat residue (9 parts

straw to 1 part root, cut into approximately 5 cm sections) in 1 L of deionized water for

3 hr at 25 ° C. Wheat residue was obtained from KSC-Biomass Production Chamber

(BPC) growouts. Leachate was prefiltered through a Whatman GF/C filter and filter

sterilized by passage through a 0.2 micron pore size Gelman Versacap filter. A 10%

leachate solution was admended with stock solutions to approximate the chemical

composition of modified Hoagland's solution (Table 2). Admendments were based on

chemical analysis of similarly prepared wheat leachate (Garland and Mackowiak

1990). The relative contribution of leachate and admendments to the total supply of

different elements in the leachate-based nutrient solution are reported in Table 3.
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Replenishment of nutrient solutions over the course of plant growth was

performed based on monitoring of the electrical conductivity of the nutrient solution. An

appropriate volume of replenishment solutions (Table 4) were added to reservoirs

when conductivity dropped below 1000 uS/cm to increase the conductivity to

• approximately 1500 uS/cm. The chemical makeup of replenshment solutions was

developed by KSC-CELSS horticulluralists by estimating the relative utilization of

different nutrients by wheat. The rate of replenishment is most intensive (approximately

every 3 days) during the 3rd-7th week of plant growth (Figure 1).

Thirteen wheat seeds (Triticum aestivum cv Yecora roja) surface sterilized with

10% bleach were planted per channel. Seeds were supported by two strips of

polyurethane foam, and moistened during seedling development by Versapor

membrane filler "wicks" in contact with nutrient solution at the bottom of the channels.

Clear plexiglass covers were placed over the plant growth trays for a 3 day

germination period. The membrane wicks were removed after 14 days when a

continuous root mat had formed on the bottom of the channels.

Microbial Decontamination and Inoculation

This research compared inocula which might arise from different approaches to

controlling microbial populations in CELSS. Microbes which survived antimicrobial

treatments of seeds and systems (see below) simulated the type of microbial

community which would develop using a decontamination approach in CELSS. This

treatment will be termed "uninoculatad" in following discussion. It is important to

realize that the potential diversity of microbes within the uninoculated systems in this

study is much greater than that expected with similar treatment in a closed system like

CELSS since these experimental systems were only partially closed. Microbes could

have entered the system during the growout around the base of plants or during

sampling procedures (see below).
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A second approach to controlling microbial populations in CELSS is inoculation

of the system with organisms adapted for growth under environmental conditions

within plant growth systems. An inoculum for this research was prepared from two

separate environmental samples: 1)wheat roots collected from Hanover County, Va.,

and 2) sediment and rocks from the South Fork of the Rivanna River north of

Charlottesville, Va. These habitats were selected because the hydroponic system

represents a flowing water system containing wheat roots. A microbial suspension was

collected from each sample type by shaking in 0.1% sodium hexametaphosphate.

Separate 125 ml Edenmeyer flasks containing 50 mls of 10% leachate were

inoculated with 5 ml of suspensions and shaken at 100 rpm for 1 or 4 days. The four

different culture types (river/1 day, river/4 day, rhizosphere/1 day, rhizosphere/4 day)

were concentrated by centdfugation, treated with glycerol, and stored at -70 ° C in

glass vials (Ghema 1981 ). Frozen cultures were prepared so that replicate inocula

could be produced for different plant growouts. The 1 or 4 day cultivation step was

performed to endch for microbes capable of degrading leachate organics, and to

produce cells in log phase which show greater survival when frozen (Gherna 1981).

Prior to each of the three growouts, a sub.sample of vials were thawed, and 0.1

ml of each type of culture (0.4 ml total) was added to a flask containing 50 mls of sterile

10% leachate solution. The flask was shaken as above for 24 hr, at which time 5 mi of

suspension was removed and added to the "inoculated" systems.

Sampling

Nutrient solution was sampled through a serum stopper located 2 cm above the

base of each solution reservoir using a 1", 18 gauge needle attached to a 60 ml plastic

syringe. Sampling was performed at day 0, 1,2, 4, 8, 16,21, 34, 46,and 63.

The root mat contained within a single channel could be removed in one piece
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without any cutting of root material. Sampled root mats were excised from the shoots,

and sectioned transversely into 1-cm lengths for subsequent analyses (see below).

Roots were sampled four times over the life cycle of wheat: 1) late tilledng at day 21,2)

flowering stage at day 34, 3) seed fill stage at day 46, and 4) harvest stage at day 63.

Surfaces within the nutrient delivery system were sampled concurrently with

root material. Rectangular chips (2.5 cm by 1 cm) of 1/8" PVC were incubated in the

solution reservoirs and removed over the course of the plant growout to estimate

microbial abundance and activity on PVC surfaces within the nutrient delivery system.

Chips were placed in holders contructed out of PVC so that that the large chip "faces"

were vertically oriented 1 cm above the bottom of the solution reservoirs. One-

centimeter sections cut from the tubing between the pump and and nutrient solution

reservoir were sampled to estimate microbial abundance and activity on the inside of

tubing walls.

Sampling at days 21,34, 46, and 63 was always performed two days after

replenishment. This approach was utilized so that short term effects in microbial

communities caused by pulse addition of organic material within the replenishment

solutions were ignored. While these effects are probably of interest, the goal of this

research was to evaluate temporal effects in microbial communities from the point of

view of a wheat life cycle rather than replenishment cycles.

Measurements

Plant biomass from sampled channels (days 21, 34, 46, 63) was separated into

root, shoot, and head fractions. Dry weight estimates were obtained after drying

overnight at 90 ° C. Total root weight/channel was estimated by taking the mean dry

weight of three 1-cm root sections, and multiplying by the total number of sections.
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Plant biomass in unsampled channels remaining at harvest (5/system) was also

separated into root, shoot, and head fractions, dried, and weighed as above. After

heads were dried, seeds were separated from the chaff, redried, and weighed.

Bacterial abundance was determined using the acridine-orange (AO) method

with epifluorescence microscopy (Hobbie et al. 1977). Suspensions of rhizosphere

microoganisms were prepared by shaking root sections in 0.1% sodium

hexametaphosphate solution containing glass beads (5-ram diameter) for three

minutes). PVC and tubing samples were dislodged from surfaces by scraping with a

razor blade. Bacterial suspensions from all habitats, including nutrient solution

samples, were sonicated for 30 sec at 100 W using a Fisher Sonic Dismembrator

MOdel 300. The sonication step dispersed aggregates of cells, thereby reducing the

variation among cell counts (Velji and Albright 1986).

Microbial activity was assayed by measuring the tumover of a mixture of 14 C.

labelled amino acids (NEC-445 Amino Acid Mixture, NEN Research Products). The

specific activity of the mixture was 2.23 uCi/ugC, which, assuming an average

molecular weight of the amino acids in the mixture of 150, is equivalent to 334

uCi/umol. The tracer method of Williams and Askew (1968) was utilized using a

concentration of 0.04 nCi/ml, or 3.33 nM amino acid. Assimilation was defined as the

radioactivity associated with particulate fraction (filtration through 0.22 um pore size

MF membrane filters). Respiration was defined as the radioactivity associated with

CO2 released after acidification of samples with 1 ml 15% HCl/10 ml of samples, and

trapped using phenethylamine. Nutrient solution samples were incubated for 30-60

rain. Root samples (1-cm sections) were incubated for 30 rain in 5 ml of nutrient

solution taken at the time of sampling and filtered through a Supor-200 (0.2 um pore

size) filter. Four replicate samples (2 live and two killed) were analyzed for each

sampling.
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Microbial growth was estimated by estimating the rate of tritiated thymidine (3H-

TdR) incorporation into bacterial DNA using the method of Pollard and Modadty (1984)

as modified by Blum and Mills (1991). Four replicate samples from each habitat (5 ml

nutdent solution, PVC chip, 1-cm tubing section, 1-cm root section cut in half

longitudinally) were placed in small glass vials. Five ml of filtered (0.2 um pore size)

nutdent solution was added to vials containing PVC chips, tubing sections, and root

samples. 3H-TdR (20 uCi) and cold thymidine were added to vials to yield a final

concentration of 60 nm. Two of each sat of four replicates were immediately fixed with

buffered formalin (4% v/v final concentration). The remaining replicates were

incubated at 25 ° C for 20 min, then similarly fixed.

Dissolved organic carbon (DOC) concentration in nutrient solution samples

were estimated using the UV-assisted persulfate oxidation method with a Dohrrnan

DC-80 Total Organic Carbon Analyzer. Nutrient solution samples were filtered through

PTFE membrane sydnge filters (0.22 um pore size) into acid washed borosilicate glass

scintillation vials. Samples were acidified to pH 3.0 with 15% nitric acid and

refrigerated at 5 ° C until analyzed.

Data Analysis

Data were analyzed by repeated measures multivariate analysis of variance

(MANOVA) using the SPSS-PC statistical software package. A 2 x 2 full factorial

model was employed with inoculation (inoculated vs uninoculated) and solution type

(leachate vs Hoagland's) as factors. The number of replicates was 3, corresponding to

the number of growouts. Complete tables of MANOVA results are not reported;

probability values for statistically significant effects (1::)<0.05) are reported in the results

section.
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RESULTS

Plant Blomass

Neither the solution nor inoculation treatments had a significant effect on plant

growth (Figures 2 and 3). Total harvested dry wt per channel was approximately 8 g

seed, 8 g shoot, and 2 g root for all treatments (Figure 3). Total plant dry wt on an area

basis (channel size of 67.6 cm2) was approximately 2700 g/m2, or 43 g/m2/day. Seed

production on an area basis was approximately 1200 g/m2, or 19 g/m2/day.

Wheat growth within these systems was similar to or greater than that in BPC

growouts at KSC. Total biomass production rates for BPC growouts ranged from 27-39

g m-2 d-l, while seed yields were 8-15.6 g m-2 d-1 (Wheeler et al. 1990). Using the

estimated integrated PPF values of 36-50 tool m-2 d-l, growth rates were 80-100% of

those reported by Bugl:)ee and Salisbury (1988). These comparisons indicate that not

only was wheat growth in LBS similar to that in HBS in this study, but that average

growth rate in all systems was similar to that expected for near-optimum, controlled

environment conditions.

Dlsaolved Organic Carbon

DOC concentration in LBS was almost five times higher than that in HBS at day 0 (240

mg/L. vs 50 rag/L, respectively), but rapidly declined to roughly equivalent values by

day 7 (60-75 mg/L). This decline reflects mineralization of leachate organics by

microbial populations within the plant growth system, and/or significant adsorption of

organics to surfaces within the NDS (Figure 4). DOC concentrations in LBS rose

slightly during the middle phases of plant growth as replenishment (and concomitant

additions of leachate organics) increased, but the effect was inconsistent among

growouts. DOC concentrations were consistently higher in uninoculated LBS systems

vs inoculated LBS at day 63 for all three growouts. Average concentration in

inoculated LBS systems at harvest was similar to that in HBS systems (approximately
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75 mg/L), but average concentration in uninoculated systems was over twice as high.

These results indicate that accumulation of leachate organics in hydroponic systems is

not significant, but only if systems are inoculated with microbial communities

selectively endched for growth on leachate. The effect of inoculation on carbon

mineralization will be discussed further below.

Microbial Abundance and Activity

Habitat Comparison

The rhizosphere habitat dominated both microbial abundance and production

(3H-TdR incorporation) in hydroponic systems at each of the four dates when samples

from all four habitats were obtained. Root-associated microbes accounted for 60-90%

of the total cells (Figure 5) and 60-95% of the total 3H-TdR incoporation on a per

system basis (Rgure 6). Non-rhizosphere cells comprised a larger percentage of the

total abundance and production in LBS compared to HBS, and at sampling dates

during the middle phases of plant growth.

The greatest proportion of non-rhizosphere 3H-TdR incorporation (up to 30%)

was associated with PVC surfaces while the greatest proportion of non-rhizosphere

cells were associated with tubing surfaces. The higher activity/ceU on PVC surfaces

suggested by this relationship is supported by lower calculated cell turnover times

(production / biomass) for PVC surfaces (less than a day) compared to tubing surfaces

(up to 8 days). The difference in turnover time between surface type was most

pronounced at the later sampling dates as cell density continued to increase on tubing

surfaces without proportional increases in 3H-TdR incorporation (Figures 7 thru 10).

Cell density was similar between surface types at day 21 (107/cm2), but over two

orders of magnitude greater on tubing surfaces by day 63 (Figures 7 thru 10).

While considerable variation in values existed among samples, habitats can be

ranked based on average cell tumover time as follows: nutrient solution > tubing >

14



rhizosphere > PVC (Table 5). The long cell tumover times reported for nutrient solution

samples (up to 5600 days) indicate very slow growth of suspended cells.

Rhlzosphere

The density of microbial cells (expressed as the number per g dry wt root)

associated with plant roots remained relatively constant from clay 21-63 (5-9 x 1010),

but the total abundance of cells increased with time (p=0.001) as the total root weight

increased (Figure 11 ). These results indicate that the limiting factor to cell density in

the root zone is the amount of root surface available for colonization. However, cell

densities (p=,0.014) and total cell abundance (p=0.084) were slightly higher in LBS

compared to HBS, indicating that additions of carbon in some way increases the

"carrying capacity" of the rhizosphere.

Microbial growth as estimated by 3H-TdR incorporation/dry wt root declined 5-

10 fold from day 21 to the middle stages of the plant life cycle, but increased again at

day 63 (Figure 12) (statistical tests of these data were not feasible since the number of

replicate data points was 1 for day 21, and 2 for day 34, 46, and 63). Increased amino

acid turnover time, another indicator of decreased metabolic activity, was also

observed at day 46 in some treatments (Figure 13). This temporal pattern suggests

reduced availability of root-derived carbon during the period of seed fill. This effect is

supported by the consistent stimulation in 3H-TdR incorporation in the rhizosphere of

LBS systems versus HBS at day 46 (remembering that the leachate treatment can be

viewed as a carbon-supplementation treatment).

Nutrient Solution

Measurements of microbial abundance and activity in the nutrient solution were

marked by significant variation among growouts, resulting in few statistically significant

temporal or experimental effects. Abundance, growth (3H-TdR incorporation), and
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metabolic activity (amino acid turnover rate) were greater in the nutdent solution of

LBS versus HBS for growouts I and 2, but equivalent or less in LBS compared to HBS

for growout 3 (Figures 14-15, Table 6), In fact, abundance, growth, and activity in the

nutrient solution was much less in all systems during growout 3 compared to growouts

I and 2.

Consistent temporal (p,,.001) and solution (1:),.0.011) effects were apparent in

microbial abundance. In general, the number of cells/ml reached a peak in all systems

(approximately 108/ml) during the first week of plant growth, and declined afterward to

values between 106-107/ml (although density in LBS increased during the middle

phases of plant growth for growouts 1 and 2). The only consistent difference between

solution type was the greater densities in LBS at days 1 and 2 when DOC

concentrations were very high.

Nutrient Delivery System Surfaces

As mentioned above, the density of microbial cells colonizing neoprene tubing

surfaces (up to 109 cells/cm2) was up to two orders of magnitude greater than that on

PVC surfaces (107 celLVcm2), but the average estimated cell turnover rate of ceils

associated with PVC surfaces was over ten times faster that of cells assodated with

tubing surfaces. While cell density and 3H-TdR incorporation on PVC surfaces

remained relatively constant over time (neither time effect had p < .05) (Figure 16),

both these parameters on tubing surfaces significantly increased with time (p=0.001

for both) (Figure 17). Conversely, cell density (p,,0.047) and 3H-TdR incorporation

(1>,.007) were significantly greater on PVC surfaces in LBS versus HBS, while no

solution effect was found for either cell density or growth on tubing surfaces.
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DISCUSSION

This work represents the first replicated studies evaluating the coupling of

CELSS-based plant growth systems and waste recycling systems for complete plant

growouts. Results indicate that the soluble fraction of inedible wheat biomass can be

directly incorporated into recirculating hydroponic systems. Inorganic nutrients within

the leachate supplied the majority of the nutritional requirements of the wheat in this

study. Organic material within the leachate does not appear to deleteriously affect

plant growth. Rather, microbial communities associated with the hydroponic system

rapidly mineralize the organic material, suggesting an important role for plant growth

systems as sites of waste recyling within CELSS.

Incorporation of leachate in the hydroponic medium significantly reduced the

quantity of inorganic nutrients added to plant growth systems from stock solutions. In

other words, the use of leachate represents an effective method of nutrient recycling.

Leachate provided the majority of all individual nutrients in the original leachate-based

solution with the exception of iron (see Table 3 for specific percentages). Micronutrient

requirements (with the exception of manganese) were completely supplied by

leachate both in the original solution and in replenishments throughout the growout.

Stock solution sources of macronutrient were reduced in leachate-based

replenishment solutions (see Table 4). However, nearly twice the amount of

replenishment solution was added to LBS versus HBS due to more rapid decreases in

conductivity observed in LBS following replenishments (see Figure 1 for

replenishment schedule). The effect of leachate on the response in conductivity could

be related to binding of ions to organic films in the systems, microbial immobilization,

or some other factor. Further research is necessary to determine the distribution of

elements within the hydroponic system (e.g. plant, microbe, non-biologically bound) in

leachate-based versus Hoagland-based systems. Despite the larger volume of

replenishment solution added to LBS, the total amount of nutrients from stock
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solutions used in replenishment was lower in LBS versus HBS for most

macronutrients (e.g. 50% for nitrogen, 63% for potassium, 45% for calcium, and 10%

for magnesium). The present study indicates that nutrient concentrations were

sufficient for adequate plant growth; more efficient replenishment schedules using

leachatiPbased solutions will need to be based on further studies involving the

monitoring of nutrient pools within the hydroponic system.

From a mass balance perspective, each LBS received between 650-750 mls of

leachate solution for the entire growout (200 mls in odginal solution, 450-750 in

replenishment solution). Between 32.5-47.5 g of inedible wheat biomass is

neccessary to produce this much leachate (leaching density of 50 g biomass/L water).

The harvested inedible biomass from each system was approximately 50 g, meaning

that the ratio of inedible biomass leached/inedible biomaas produced was 65-95%.

This percentage can be viewed as an index of the closure of the recyling loop. The

lack of complete closure (i.e. - ratio < 1) is a result of nutrient imbalance in the

leachate. The leachate was diluted to reach adequate levels of micronutdents,

creating both the need for greater nutrient supplementation, and an "excess" of

leachate. In an operational bioregenerative system, the leachate recycling loop could

be fully closed by 1) using the "excess" leachate as nutdent media for other biological

systems (e.g. - microbially-based reactors), or 2) reducing the micronutdent

concentrations in the leachate so that more concentrated solutions could be used.

Either strategy requires the use of other waste recycling streams (e.g. - human waste)

in combination with leachate to produce a hydroponic media which provides all plant

nutrient requirements.

An altemative configuration of the waste recycling "loop" in CELSS would

involve separation of the waste treatment and plant growth systems. In this design, a

separate leachate reactor would be used to perform a biological pretreatment step to

remove organic material from the leachate prior to the addition of a largely inorganic
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feed stream to plant growth systems. While this research indicates that this step is not

neccassary in order to detoxify or mineralize the organic fraction of leachate, a

separate bioreactor may more effectively convert soluble organics into microbial

biomass suitable for food production (i.e. - aquaculture). The effectiveness of a

separate reactor lies not with increased production of microbial biomass, but with

increased availability of the biomass to aquaculture systems. The majority of microbial

biomass produced in hydroponic systems is associated with the root mat. Methods

would have to be developed to transfer the carbon from the root zone since grazing of

the root mat itself by fish could be detrimental to plant health. Biomass produced in a

leachate bioreactor could be more readily harvested and transfered into aquaculture

systems without affecting important processes within CELSS (i.e.- plant growth).

Microbial biomass produced from a leachate bioreactor represents only a small

fraction (< 3%) of the total amount of waste products available for food input to the

aquaculture system (Garland 1989). Therefore, the costs involved with the operation of

the bioreactor (e.g. - energy, volume) may exceed the potential benefits.

The addition of leachate organics to the hydroponic systems did not greatly alter

the temporal or spatial patterns in microbial growth, activity, or abundance.

Rhizosphere communities dominated both microbial production and abundance in

both LBS and HBS. Addition of leachate did increase growth and abundance of

bacteria associated with PVC surfaces, indicating carbon limitation in habitats

removed from the rhizosphere in unsupplementad systems. The stimulatory effect,

however, was only limited to periods of intensive replenishment. The dominant

temporal pattern in microbial growth in the systems, a decline during the middle stages

of the plant life cycle, appeared to be related to decreases in the release of root-

derived carbon. This decline was observed in both HBS and LBS, although growth

rates were consistently higher in the rhizosphere of LBS at day 46, indicating the

development of carbon-limiting conditions in HBS at this time. The observed rise in
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bactedal growth in the root zone at harvest is counter to previous studies involving the

pulse-labelling of wheat with 14C-CO2, suggesting that the dominant source of root-

dedved carbon near the end of the plant life cycle was sensecent root cells (i.e. - root

lysates), rather than recently fixed photosynthate (i.e. - root exudates). These data

provide both the conceptual and empirical basis for a model of carbon flow in

hydroponic system. This model is presently under development at KSC.

Total transfer of carbon from plant roots can be estimated by integrating

bacterial production rates for all habitats over the plant life cycle in HBS. This

calculation assumed 1) a conversion factor of 1.38 x 1018 calls/mole 3H-TdR

incorporated (Pollard and Moriarity 1984, BIum and Mills 1991 ), 2) an average cell

biovolume of 0.2 wn3, 3) an average C content/cell biovolume of 10-13 gC/l_m3

(Bratbak 1985), 4) a growth efficiency of 40% (theoretical yield of energy from

glucose), and 5) that recycling of carbon in microbial communities was negligible.

Based on these calculations, the loss of carbon from roots expressed as a percentage

of NPP decreased from 5-8% at day 21 to approximately 3% at harvest. The higher

estimates are based on the assumption that bacterial production increased linearly

from day 0 to day 8, then remained steady until day 21. The lower estimate assumes a

linear increase from day 0 to day 21. The high suspended cell density and DOC

concentration during the early phases of the growout suggest high rates of carbon loss

during the early phases of plant growth. On the other hand, total root mass avaJlable

for microbial colonization was very small dudng the first week of plant growth. More

intensive sampling of bacterial productivity during the early phases of plant growth is

cleady necessary to resolve this question.

This estimate of carbon loss from roots is within the lower range of values for

soil-cultivated wheat labeled with 14C.C02 (see introduction). This estimate

obviously is highly dependent on the conversion factors used in the calculation. While

determination of specific conversion factors for hydroponic systems might increase the
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accuracy of the estimate, the likelihood that it is an overestimationof the actual carbon

loss from roots is low since 1) average or conservative values for conversion factors

were used, and 2)a significant fraction of the total habitat in systems (PVC surfaces

within plant growth trays, tubing connecting solution reservoirs to plant growth trays)

were excluded from the calculations. Significant release of carbon into systems from

trays, silicone sealer, tubing, or other materials used in the construction of the system

would be a cause of serious overestimation of carbon loss. Estimation of bacterial

production in unplanted systems would help quantify non-root sources of carbon.

However, it is unlikely that non-root sources of carbon were significant since more than

90% of bacterial production in the system was located in the rhizosphere. One would

expect much greater activity on surfaces if they were the source of large quantities of

organic material. Therefore, this study indicates that at least 3% of total NPP is

released as organic material through the roots of wheat plants grown in hydroponic

cultures, and levels in excess of 10% are likely for early pedods of plant growth. If one

assumes a constant loss of 6% of NPP for a plant growth system with wheat plants

under continuous cultivation (i.e. - plants at all different stages of growth), the flux of

carbon from roots represents approximately 25% of seed production. This estimate is

based on Gadand's mass balance model of carbon flux in CELSS.

The major conclusion to be drawn from the data for the purposes of the present

study is that addition of soluble organic material of plant origin does not cause

excessive growth of microorganisms, resulting in problematic "biofouling" of the

system (e.g. - large biological oxygen demand resulting in anoxic conditions in the root

zone, clogging of root mat pores, etc.). Rather, the microbial communities in

hydroponic systems appear to rapidly mineralize the additional organic material with

only relatively minor changes in microbial abundace, growth, or activity. Inoculation of

the systems with microorganisms selectively enriched for growth on leachate organics

is neccessary to prevent the accumulation of the more recalcitrant organic fraction.
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Accumulation of DOC in uninoculated LBS versus inoculated LBS was only observed

at the day 63 sampling. If one assumes that the effect of inoculation was the selective

enrichment of the enzymatic capacity necessary to degrade a recalcitrant fraction of

leachate organics, a gradual elevation in DOC in uninoculated vs inoculated systems

with time might have been expected. The fact that this effect was limited to day 63 may

be related to the fact that carbon did not limit microbial growth in LBS until the rate of

replenishment declined (after approximately day 50). Differences in catabolic potential

with inoculation would not have been apparent as excess carbon (probably the most

recalcitrant molecules) accumulated, both in solution and bound to surfaces (estimates

of bound carbon were not obtained, but a brownish color was apparent on surfaces

within LBS, particularly on tubing surfaces and root material). When carbon became

limiting after day 50 and the microbial communities turned to the more recaltitrant

molecules as carbon sources, the increased catabolic potential of the inoculated

communities would have become apparent. This entire argument could be tested by 1)

more intensive temporal sampling when replenishment rate decreases, 2)

characterization of the DOC into labile and recalcitrant fractions, and 3) analysis of

potential carbon accumulation on surfaces.

The results of the present study reveal several areas of future research related

to the microbial ecology of plant growth systems in CELSS. First, microbial biofilms

which develop on hardware surfaces within the nutrient delivery system represent a

potentially signifidant site of microbial abundance and activity in the system which has

been largely ignored. The microbial communities associated with tubing surfaces

showed more distinctive temporal and experimental responses than those associated

with PVC surfaces. The present study does not allow for the separation of the effects of

flow and surface type. However, the significant differences between the two habitats in

the present study indicate that both factors should be evaluated in future studies.

22



These results also indicate that while the nutrient solution is the most easily

sampled habitat within plant growth systems, it is not an effective site to monitor

microbial dynamics within the system. Microbial abundance, activity, and growth in the

nutrient solution are all relatively insignificant compared to that in other habitats which

show high variability among growouts. This study indicates that biofilms on hardware

surfaces represent a much more effective site of microbial monitoring because they 1)

constitute a larger fraction of total microbial activity and abundance in the system, and

2) possess high cellular tumover rate, and, therefore, may reflect recent changes in

factors affecting microbial activity.

This study also represents the first application of techniques measuring

microbial function (growth and metabolism) in CELSS-based plant growth systems.

Further work characterizing the role of microbial communities in both the carbon and

nitrogen cycle (e.g. - denitdfication) are needed to fully understand the flux of materials

within CELSS.
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TABLE 1. Chemical composition of modified Hoagland's solution.

Stock
Solution g/L [stock] ml stock/L [working]

Ca(NO3)2 236.15 1M 2.5

KNO3 101.11 1M 2.5

MgSO4 246.48 1M 1.0

KHP2PO4 136.09 1M 0.5

Fe-EDTA
FeCI3 2.42
h'EDTA* 2.43

Micronutrients
H3BO3 1.07
MnCI2 0.67
ZnSo47H20 0.083
CuSO45H20 0.03 g
(NH,_)sMo70244 0.0642
.4H20

8.96mM Fe

17.27mM B
3.36mM Mn
0.29mM Zn
0.12mM Cu
0.04mM Mo

11

1.1

2.5mM Ca
5.0mM N

2.5mM K
2.5mM N

1.0raMMg
1.0mM S

0.5mM K
0.5mM P

601_MFe
0.18mM CI

19.00p.MB
3.701J.MMn
0.321J.MZn
0.13p.MCu
0.04p.MMo

* - acid form of EDTA
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TABLE 2. Composition of leachate-based nutrient solution.

Stock
Solution ml/L soln.

Ca(NO3)21 1.25

MgSO41 0.42

Fe-EDTA1 11

MnCI22 0.28

10% Leachate3 100

1. stock solutions described in Table 1

2.0.67 g MnCI2/L

3. Leachate prepared by mixing 1 part leachate (extract of 50 g wheat straw and root
mixture soaked in 1L deionized water for 3 hr) with 9 parts deionized water.
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TABLE 3.

Stock

Sources of chemicals in 10% leachate solution.

Nutrient1
N P K Ca Mg Fe Mn Cu Zn Mo B

Stocks 100 50 10 5.6 0.5

Leachate2 80 26 300 39 14 0.3 0.15 0.03 0.02 n.d. 0.3

%Leachate 3 44 100 100 44 58 5 75 100 100 -- 100

1. concentration of nutrient in ppm

2. Estimates based on chemical analysis of similarly prepared leachate by Garland and
Mackowiak (1990)

3. % of nutrient supplied by leachate
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TABLE 4. Replenishment solutions. Solutions A and B prepared and stored
separately, but added in equal volumes to systems depending of solution conductivity
(see text).

SOLUTION A SOLUTION B

Stock* ml/L soln. Stock* ml/L soln.

HOAGLAND'S SOLUTION

KNO3 240 CA(NO3) 2

KH2PO 4 30 MgSO 4

Micronutrients 40 Fe-EDTA

LEACHATE SOLUTIONS

KNO 3 20 CA(NO3) 2

KH2PO 4 20 MgSO4

MnCI 2 8 Fe-EDTA

10% leachate

30

20

88.75

24

8

140

600

i

- Stock solutions prepared as described in Tables 1 and 2.
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TABLE 5. Descriptive statistics of cellular tumover time for habitats.

HABITAT MINIMUM MAXIMUM MEAN MODE

NUTRIENT

SOLUTION 7 5600 298 80

RHIZOSPHERE 1 725 40 8

PVC SURFACES 0.1 10 2 1.2

TUBING
SURFACES 0.3 74 20 9.6
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TABLE 6. Uptake of 14C.labelled amino acid mixture by nutrient solution samples.

GROWOUT COMBINED 1 HOAGLAND 2 LEACHATE 3

TURNOVER TIME (HR) 4

1 2.97 (1.35) 3.38 (1.78) 2.58 (0.55)

2 2.96 (1.89) 3.42 (2.41) 2.55 (1.12)

3 9.81 (10,11) 7.23 (7.33) 12.39 (11.74)

1. Mean and std. dev. of values for all systems

2. Mean and std. dev. of values for hoagland-based systems

3. Mean and std. dev. of values for leachate-based systems
4. Turnover rate based on both assimilated and respired 14C.labelled amino acid

mixutre

32



1500,,r 1

/ A o--o -GO,/UN ..,, /
_ ,,,.,.,l O_O --GO1/.IN II'" r.-_ I
"_"T A_A - GO2/.UN --/ 0 "_ I

: / A_ • - GO2/IN -,,"10" /
,,,vwJ. D_C] - GO3/UN _ /
"''I m--m - _O_/,N,l_q._:-_-0°0 !

750+ .-_ Ar-_ --.0 O _" /
n- • _U/ ° /
_t ....di_'- ' . I

u
O"

0 5 10 15 20 25 30 ,35 40 45 50 55 60 65

DAY

5 10 15 20 25 30 .35 40 45 50 55 60 65

DAY

(

FIGURE-1. Replenishment schedule-for-a)-Hoagland-based-and b) leachate-based
systems for all three plant growouts.
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days 34 and 63 represent means and std. dev. of samples from all three growouts,
values for day 21 and 46 represent means and std. dev. of values for growouts 2 and 3
only.
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only.
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....... FIGURE-t- .1=-Acridine.orange-erjumerated cell counts in the rhizsophere expressed on
a A) mg dry weight root, and B) wh01echahfi_Fb-aSiS-.-Means a--nd-stcl:dev: based on .....
data from three replicate growouts.

43



2O

B

20,

IS,

20

10,

O
Z S'

A

Io

A

O_O - HOAG/U N
LF.ACH/UN

A--,_ HOAG/I N

A--,_ LEACH/IN

• ,_

I I I

0 10 20 ,_0

I I

? l o J •

:m '- ,m se

I I l

40 50 60 70

OAY
M

C

i'"
e_
• ,_ _, ; ._,..,. ,_

M,

_s,I.

j ./
O!o ,', _ _ ,_

tO

FIGURE_I2. !ncorpomtioq_of.3H-TdR_illto_cold_T_CA_soluble-macromolecules for ...
rhizosphere samples based on a A) mg d_] weight root and B) total channel basis.
Values for days 34, 46, and 63 represent means and std. dev. of growouts 2 and 3,
values for day 21 represent data fromn growout 3 only.

44'



lea IA • • o--o - HOAG/VN

I \ e--e - I.[/_CH/IJN
1E8"1" \ A--& -- HON;//I.N

8E31 _ A--A --+/IN

I"

a_ T

2
Ol I , I I I I I

0 10 20 30 DAY40 50 8O

1_7. B
8F.8[ " ;,

0 10 20 30 40 5O 80 70

DAY

FIGURE 13. Turnover time of amino acids in rhlzosphere samples based on
combined respiration and assimilation of 14C-labelled amino acid mixture in A) all, B)

uninoculated Hoagland, C) inoculated Hoagland, D) ininoculated leachate, and E)
inoculated leachate treatments. Values in all graphs represent means of three
replicate growouts, std. dev. presented in graphs B-E only.

45



L

i

,--1 o--0- Nop_uw | !(4_

_'C_ ,_ ' /:. .: -' , _ ,oooJ , .
20 .,,, ,,u 0o gO 70 . 0 ,,, -- * _ i

O_ i" ,-v _O 40 50 eO

, jl
cs -----6"".._ A A_ I[s o _e...._e

P / _ '"t
114/0 10l 20l I I * I A !

30

04Y

FIGURE 14. The number of acridine- orange-enumerated cells/ml of nutrient solution.
Numbers represent A) mean values of all three growouts, and B-D) values for
growouts 1-3, respectively. .....

46



_lOO,

400.

¥
100

O
0

750 ,

z
• 500,

G.

O 250.

l]¢

i

ol
0

(¢ 20.
O

10-

oJ
0

I'A

O_O - HOAG/UN
e_e LENCH/UN

! ! !

I0 20 30 40 50 (50 70
DAY

l" °
10 20 30 40 50 SO 70

DAY

TO 20 30 4O 50 6O
DAY

7O

FIGURE 15. Incorporation of 3H-TdR into cold TCA insoluble macromolecules for

nutrient solution samples. Values represent means and std. dev. of replicate samples
at specific sampling days during growouts A) 1, B) 2, and C) 3.

47



llrR, ,......--._.

" J O,,_AO _N .e-.---.._H/UN

DAY

B

E

O,

0 10 20 30 40

DAY
5O 6O 7O

FIGURE 16. Number of acridine orange-enumerated cells and B)3H-TdR

incorporation into cold TCA insoluble macromolecules per cm 2 of PVC sampling chip.
Values represent means and std. dev. of three growouts.

48



1E10

A

;,°. .¢.o-
1E6 I I I I I o

0 10 20 30 DAY 40 50 60 70

_=/B / I

t I
_ ,_-I- I/_,._l_'I,----_ I

DAY

FIGURE 17. Number of acridine orange-enumerated cells and B) 3H-TdR
incorporation into cold TCA insoluble macromolecules per cm2 of tubing section.
Values for days 34 and 63 represent means and std. dev. of all three growouts, values
for day 21 and 46 for growouts 2 and 3 only.

49



"_ud



I r-eenAA_eve#REPORT DOCUMENTATION PAGE ow _ o_o,_

0emmllmW. Sulm t20_Ar_qam, vA _2Ll-_L1. amltomeOmm_ Mwmlemem _ I_I_L _pmwmt lm_ti_ l,mNxz(_;044__. O( _S_I.

I. AGENCY USE ONLY (Leave bkNrlk) 2. REPORT DATE 3. RIFq)RT TYPE AND DATES COVERED
March 25, 1992

4, TII1J[ AND suIrlTTUE S. FUNDING NUMIIERS

Coupling Plant Growth and Waste Recyling Systems in
a Controlled Ecological Life Support System (CELSS)

t. JmTm0nis)

JWGmtand

,7. IqUWCXUm_OneJuwAnOmwutmKS)ANDAOO_SS(ES)

The 8k)nstk:s Corporation
Mail Code: 810-2

Kennedy SpaceCenter, Flodda 32899

!1. SPONSOBIN(ilIdOIIIffOIUMG AGENCY NAME(S) AND ADORESS(ES)

NASA
Mail Code: MD
John F. Kennedy Space Center, Ft. 32899

IL PI[RFOIIUdlNG ORGANIZATION
REPORT NUIdOER

10. SPONSORING / MONffORJNG
AGENCY REPORT NUMBER

Tl_ 107544

I1. Sulqq.JU_NTARY NOTES

128. 01STIgRnlONIAVALAIEJT_ STKrEMENT 12b. OISTRUIUTION CODE

13. NmlMCT _'Mammm200wmm;

The_ d _cxegeemUJvesyummoaspat of meCmUel_d_ LHeS.m_ System
(CELSS) Wagrm. de_mdlk in lalge pat. on the airily to recycle inolganio rUflerU _ in _e
mmriJ intoplmtgrewmwmmL Onea_k:m vnute(reeeurce)smmmininedi:_epuntmatermi.Th_
rween:_c,xepwedwhe_groamInhycUepa_aokjUombreedon_xgank: uas (mocbd _k_agUncrs)
wilh _ IxmKI ONthe solul_ fraction of inecgi_ wheat biammm (leect_e). Recycdednutrients in
ua:tmu mu_om Ixevk_ memm_ of mineraln.u_m__ puntgexvm,amujghmdUjonsof _em_
rUflenls to leechele ealulion_ were necx:emmy. _eeullsh_i_N tim plentgrowthand wa_e rec_g
sYmem_ can be effec:llv_ ¢mpled witNn GELSS bued on 1) equivldent wheat yietd in leacl_e and
HoeglandsoUione,anti2)merupidmtneraJU_eof vnu_ oegmicmm_al inthe hydroponicsy,,terns.
Selec:_lveenrk:tunent for _ commuldleo alOeto mineralize o_gank:material within the leach_e was
necx:emmy m _ accumu_ of_ _ _ inleect_e-basedsolutions.Extensive
analy_e of _ abundance, grow_ and lu:tivily in the hydroponic systems indicted thl_ addition of

oqlank: m_edai from plants dram nat cause em:msive microbial growth or "oiofouling', and helped
def_aeme_ nuxof cad_ee_nhydmponemkdJonL

14. SUIIEClr TEImS

life Support, CELSS, and Hydroponic
solu_n

17. SI[CUIUTY CLASSIFICATION 18. SECURffY CLASSIFICATION

NSN 75d0-01-Z80-S5(X)

IS. SECUIUTY Q.ASSIFICATION
OF ABSTRACT

15, NUMBER OF PAGES

54
14. _ CODE

20. UMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)



GENERAL INSTRUCTIONS FOR COMPLETING SF 2gl

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be condstent with the rest of the report, particulady the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
omk_xannkq m_Vmene_

Block I. Aaencv Use Only (Leave blank).

Block 2. Renort Date. Full publication date

including day, month, and year, if available (e.g. 1
Jan 88). Must cite at leastthe year.

Block 3. Tvae of Renort and Dates Covqr_l.
Statewhathermport isintedm, final, etc. If

al_icable, enter indudve report dates (e._ 10
Jun 87 - 30 Jun 88).

Block4. Titleand Subtitle. A title is taken from

the part of the report that provides the most
meaningful and complete information. When a.
report is prepered in more than one volume,

repeat the primery title, add volume number, and

include subtitle for the specific volume, On
dassifled documents enter the title dassification

in perenttm,,,_

BlockS..Fundina NumlNf_ To indude contract

and grant numbers; may include program
dement number(s), project number(s), task
number(s), and work unit numl0er(s). Use the
following labels:

c -Contract PR - p_ect
G Grant TA - Task

lie- Program WU- Work Unit
Element Accession No.

Block IL Author(s). Name(s) of person(s)

responsible for writingthe report, performing
the research, or o_ditad with the conter_t of the

report, ff editor or compiler, this should follow
the name(s).

Block 7. Performina Oraanization Name(s) _nd
AddresSes). S_f-e_an_ory.

Black IL Perfo_mirm Ormmization Reaort

Number.Enterme uniquealphanumericreport
number(s)asigned byme org_z_o.
performingthe report

Block g. Soonsodna/IMonitorinaAaencf Namq(s)
and Addrasdes|. Self-explanatory.

Block 10. Saonsodna/MonitodnqAqlmcv

Reoort Number. (If known)

Block 11. Suoolementarv Notq¢ Enter
information not induded elsewhere such as:

Preperad in cooperation with...; Trent of..., To be

publishGd in.... When a report is revised, include

• statementwhether me nQwreportsupersedes
or supplements the older report.

Block 12,1. Distributi0n/Availability _;t_temqr_

Denotes public availability or limitatior_ ate any
availability to the public. Enter additional

limitations or S104Kialmarkings in ell capitals (e.g.
NOFORN, REI., ITAR).

GOD

DO| -

NASA-
NTIS -

See DoDO 5230.24, "Distribution
Statements on T_hnical
Dlxuments. °

See authodtie¢
Handbook NHB 2200.2.

Leave blank.

Block 12b_ Distribution Code.

DOD - Leave blank.

DOE - Enter DOE distribution categories
front thQ Standard Distribution for
UncJassifled Scientific and Technical

Repor_
NASA-Leave blank.

NTIS Leave blank.

Block 13. AbstraclL' Indude a brief (Maximum

200 words) factual summary of the most
significant information contained in the report.

Block 14. Sublect Terms. Keywords or phrases

identifying major subjects in the report

Block 15. _._. Enter the total
number of pages.

Block i6. Price Codqr. Enter appropriate price

_de (NT_ o_y).

Blocks 17. - lg. Security Classifica_ion_ Self-
explanatory. Enter U.S. Security Oamfication in

accordance with U.¢ Security Regulations (i.e.,
UNCLASSIFIED). If form contains classified

information, stamp dassiflcation on the top and
bottom of the page.

Block 20. Umitation of Abl_ra_ This block must
be completed m assign a limitation to the

abstract. Enter either UL (unlimited) or SAR (same

as report). An entry in this block is.necessary if
the abstract is to be limited. If blank, the abstract
is assumed to be unlimited.

Standard Form 298 Sack (Rev. 2-89)


